THE PRESENT AND FUTURE OF UNRELATED STEM CELL DONOR REGISTRIES

Marrow Donor Program Belgium ALEJANDRO MADRIGAL Nov 2017

saving the lives of people with blood cancer

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

>32 million unrelated donors

>1 million

transplants

saving the lives of people with blood cancer

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

WHO WAS ANTHONY NOLAN?

- Anthony was born in 1971 with Wiskott-Aldrich syndrome
- A bone marrow transplant was the only known cure but there was no system or process to find a match
- In 1974 his mother, Shirley, started the world's first bone marrow register
- Anthony died in 1979 but the register continues to

grow

saving the lives of people with blood cancer (ION-11)LONDON. Dec.20(AP)Mrs. Nolan, right, of Australia, campaigning with friends in Downing Street here today just before the arrival of Australian Prime Minister Gough Whitlam. She is trying to get British and Australian Government aid to help cure her son, Anthony, who is suffering from a rare bone disease. Mrs. Nolan has also started an Anthony Nolan Appeal Fund to assist Westm inster Hospital to treat all child sufferers of blood and bone marrow "diseases (AP CABLEPHOTO)

AT WHAT PRICE A LIFE?

E20,000 ANNUALLY WOULD

FINANCE THE ANTHONY NOLAN LABORATORY.

MR. WILSON & MR. WHITLAM

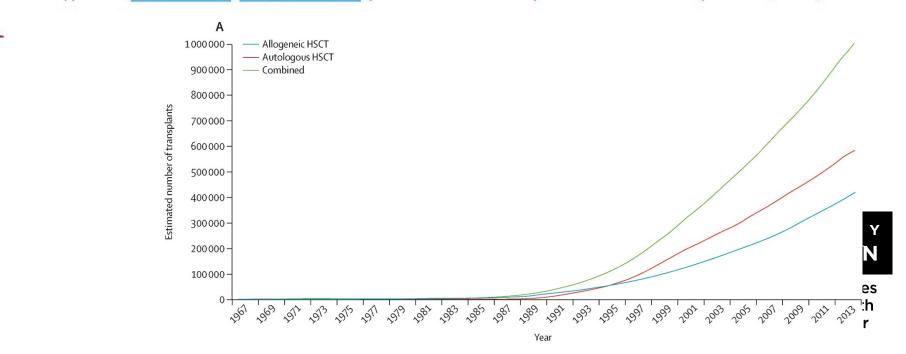
THIS IS A RACE AGAINST TIME ANTHONY NOLAN APPEAL

THE BRITISH & AUSTRALIAN GOVERNMENTS ARE LETTING

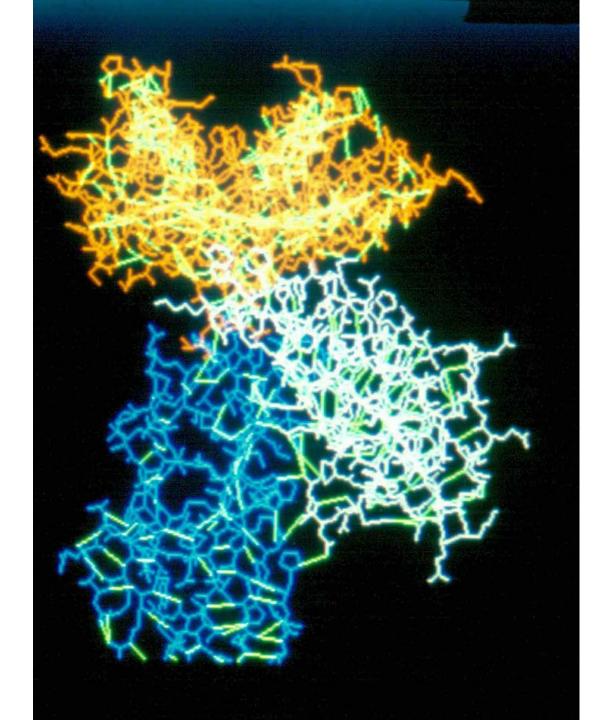
THIS CHILD DIE.

A CHANCE TO LIVE

WOULD YOU LET YOUR (HILD DIE?


1971 - Anthony Nolan was born suffering from Wiskott-A	Aldrich Syndrome
--	------------------

- 1974 Donor recruitment commenced to establish a panel of donors
- 1979 Anthony died without receiving a transplant
- 2017 Number of donors on Register UK = >1000,000
- 2017 Number of donors provided for transplant = 15,000


One million haemopoietic stem-cell transplants: a retrospective observational study

Alois Gratwohl, Marcelo C Pasquini, Mahmoud Aljurf, Yoshiko Atsuta, Helen Baldomero, Lydia Foeken, Michael Gratwohl, Luis Fernando Bouzas, Dennis Confer, Karl Frauendorfer, Eliane Gluckman, Hildegard Greinix, Mary Horowitz, Minako Iida, Jeff Lipton, Alejandro Madrigal, Mohamad Mohty, Luc Noel, Nicolas Novitzky, José Nunez, Machteld Oudshoorn, Jakob Passweg, Jon van Rood, Jeff Szer, Karl Blume†, Frederic R Appelbaum, Yoshihisa Kodera, Dietger Niederwieser, for the Worldwide Network for Blood and Marrow Transplantation (WBMT)

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

THE NUMBER OF RECOGNISED ALLELES
AT EACH HLA LOCUS March/97HLA-CLASS IHLA-AHLA-BHLA-C8518844

HLA- CLASS II HLA-DRB HLA-DQB1 HLA-DP 221 32 76

THE NUMBER OF RECOGNISED ALLELES
AT EACH HLA LOCUS March/2007HLA-CLASS IHLA-AHLA-BHLA-C485816262

HLA- CLASS II HLA-DRB HLA-DQB1 HLA-DP 543 75 125

THE NUMBER OF RECOGNISED ALLELES
AT EACH HLA LOCUS Oct/2016HLA-CLASS IHLA-AHLA-BHLA-AHLA-B>3,500>4,400>3,100

HLA- CLASS II HLA-DRB HLA-DQB1 HLA-DP >2,100 >950 >670

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

HLA Typing Techniques

Serology

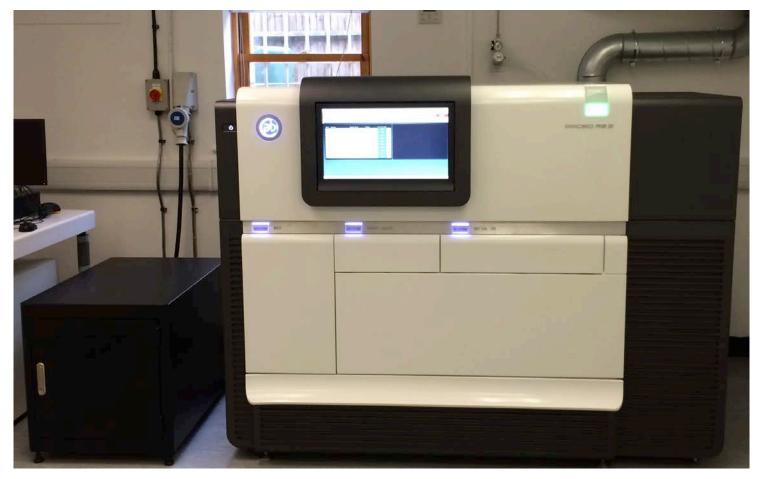
Uses antibodies to type for HLA molecules on viable cells

DNA based

- Sequence Specific Oligonucleotide Probing (SSOP)
- Sequence Specific Priming (SSP)
- Sequencing Based Typing (SBT)
- Next Generation Sequencing (NGS)
- Third Generation Sequencing (TGS)

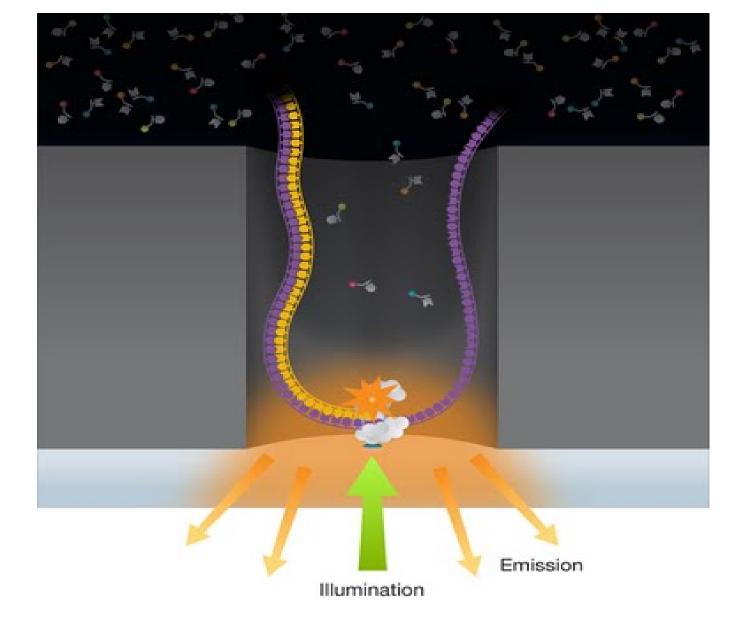
The future of HLA typing

Illumina Mi-Seq

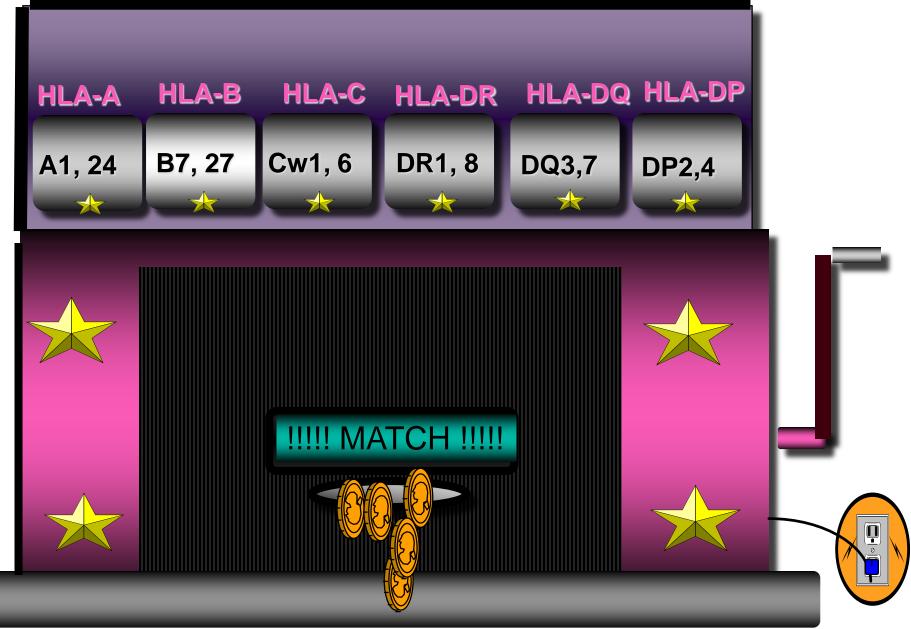


454 Technology

Life-Technologies Ion-Torrent

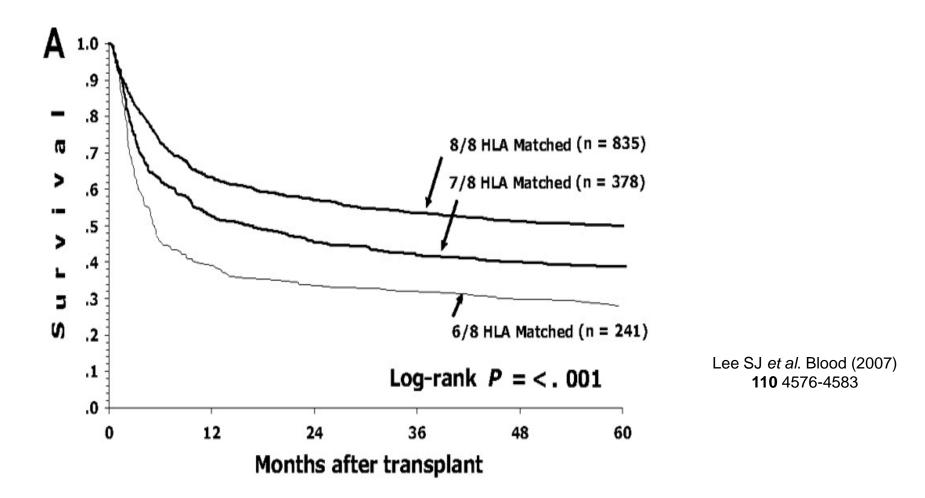

The PacBio Machine

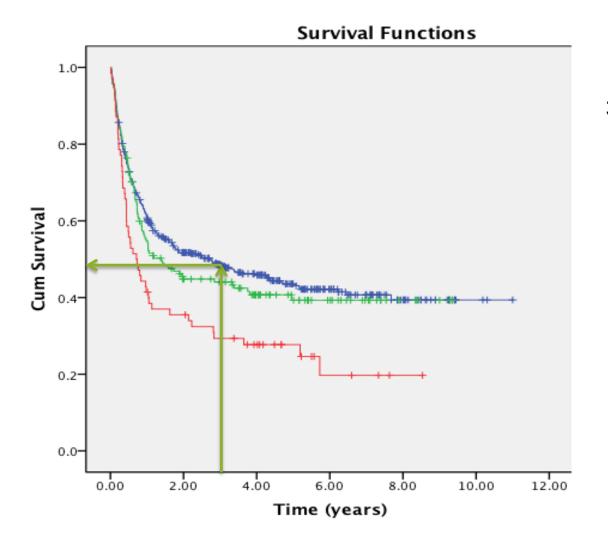
An Example of Allele Level HLA data generated by Third Generation Sequencing


Sample ID	Barcode	Number of Reads	Predicted Accuracy	QV	Gene	Allele Result
1	004F004R	365	0.99994	42.00	HLA-A	A*02:01:01:01
1	004F004R	177	0.99994	42.00	HLA-B	B*39:01:01:03
1	004F004R	359	0.99994	42.00	HLA-C	C*07:02:01:01
2	014F014R	150	0.99994	42.00	HLA-A	A*02:01:01:01
2	014F014R	131	0.99994	42.00	HLA-A	A*31:01:02:01
2	014F014R	319	0.99994	42.00	HLA-B	B*40:01:02
2	014F014R	244	0.99994	42.00	HLA-B	B*15:01:01:01
2	014F014R	452	0.99994	42.00	HLA-C	C*03:04:01:01
3						
3	018F018R	175	0.99994	42.00	HLA-A	A*29:02:01:01
3	018F018R	161	0.99994	42.00	HLA-A	A*02:01:01:01
3	018F018R	118	0.99992	41.99	HLA-B	B*08:01:01
3	018F018R	105	0.99994	42.00	HLA-B	B*44:03:01
3	018F018R	236	0.99994	42.00	HLA-C	C*16:01:01
3	018F018R	181	0.99994	42.00	HLA-C	C*07:01:01:01
4	021F021R	500	0.99994	42.00	HLA-A	A*01:01:01:01
4	021F021R	189	0.99994	42.00	HLA-B	B*44:02:01:01
4	021F021R	140	0.99993	41.99	HLA-B	B*08:01:01
4	021F021R	182	0.99994	42.00	HLA-C	C*07:01:01:01
4	021F021R	158	0.99994	42.00	HLA-C	C*05:01:01:02
5	023F023R	136	0.99994	42.00	HLA-A	A*01:01:01:01
5	023F023R	107	0.99994	42.00	HLA-A	A*03:01:01:01
5	023F023R	150	0.99965	41.98	HLA-B	B*52:01:01:02
5	023F023R	132	0.99973	41.98	HLA-B	B*35:01:01:02
5	023F023R	291	0.99994	42.00	HLA-C	C*04:01:01:05
5	023F023R	249	0.99994	42.00	HLA-C	C*12:02:02

HLA typing for the next generation

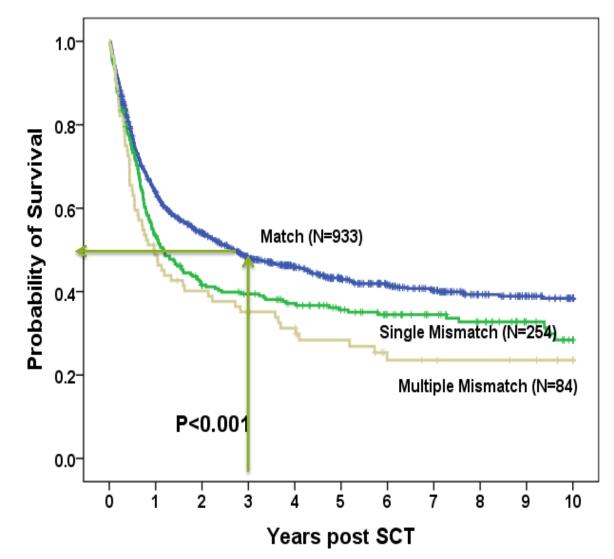
Mayor NP, Robinson J, McWhinnie AJM,et all *PLoS ONE.* (2015) **10(5)**:e0127153.


- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT


©Alejandro Madrigal 2015

HLA allele matching on overall survival

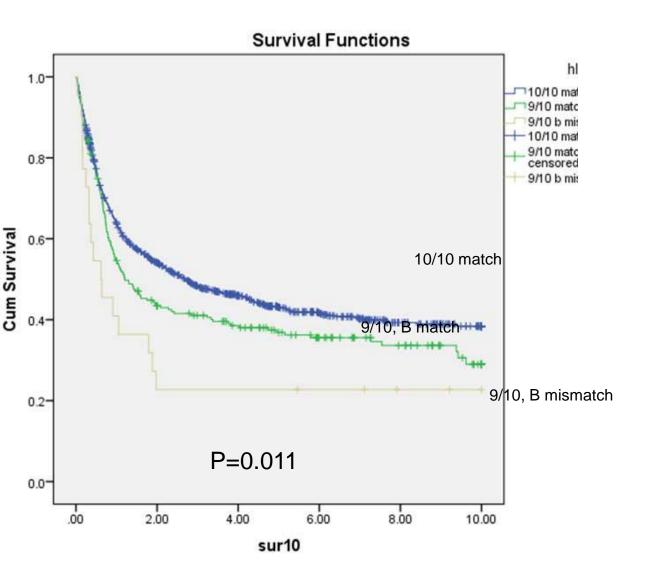
UK DATA: 1996 - 2006


488 UD recipients

3 year overall survival for 10/10 match = 51%

UK DATA: 1996 -2014 1271 UD recipients

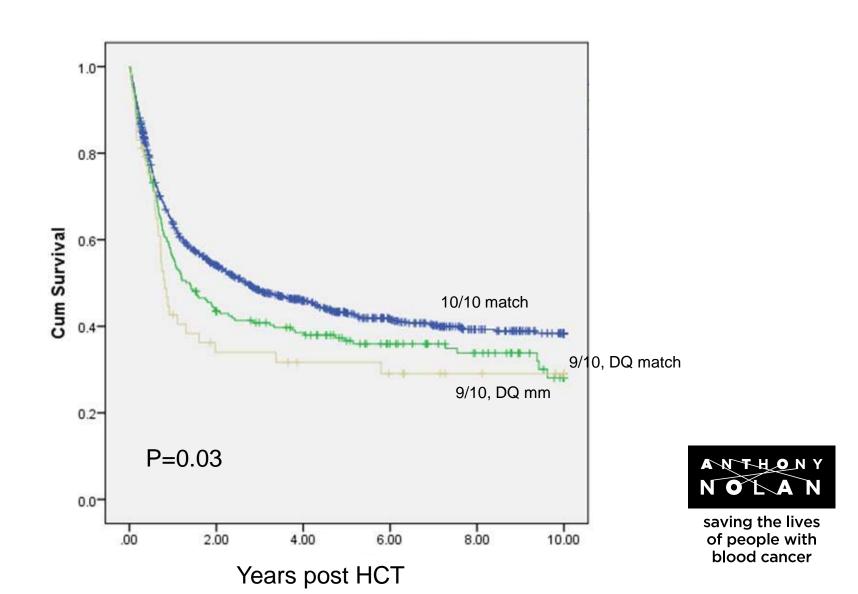
3 year overall survival for 10/10 match = 50%


BE A MATCH, SAVE A LIFE

Diverging effects of HLA-DPB1 matching status on outcome following unrelated donor transplantation depending on disease stage and the degree of matching for other HLA alleles. Shaw BE, Mayor NP, Russell NH, Apperley JF, Clark RE, Cornish J, et al. Leukemia 2010;24(1):58-65.

Permissive HLA-DPB1 mismatching compared to a non-permissive mismatching significantly improves overall survival following allogeneic transplantation in patients with both 10/10 and 9/10 matched unrelated donors B E Shaw, K Fleischhauer, M Malkki, T Gooley, E Zino, S Spellman, Y Morishima, A Velardi, P Bardy, J Bignon, J A Madrigal, E W Petersdorf *on behalf of the International Histocompatibility Working Group in Hematopoietic Ce*//

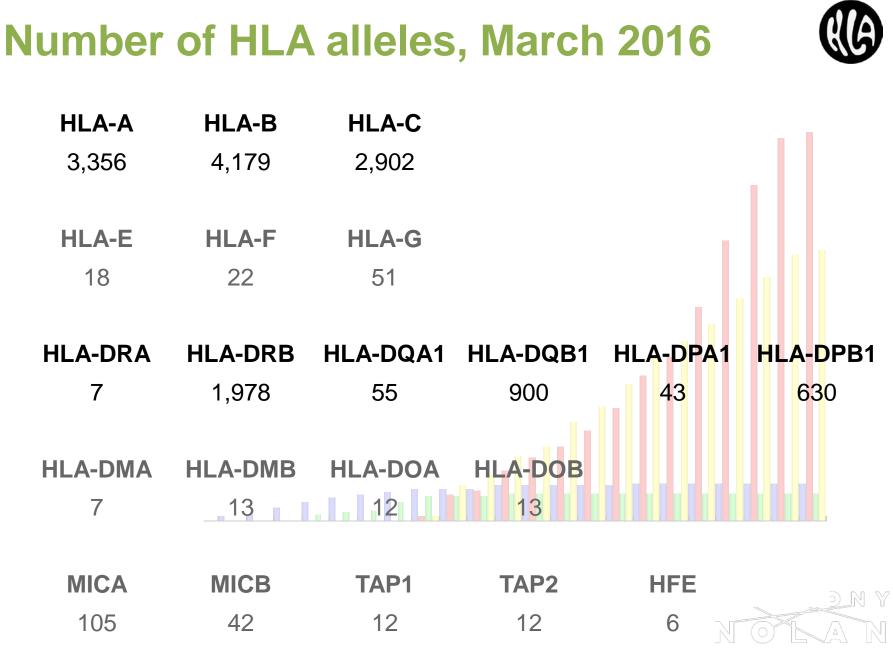
Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon J-D, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. **The lancet oncology. 2012;13(4):366-74.**


Impact of HLA-B matching on overall survival

ANTHONY NOLAN

saving the lives of people with blood cancer

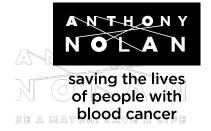
Impact of HLA-DQB1 matching on overall survival



Impact of HLA mismatching at individual loci on overall survival

	٥٧	ERALL SURVIV	NRM AT 1 YEAR		
	Ν	Median Survival (y)	p-value	1 year NRM	p-value
HLA match status 10/10 1 mm >1 mm	933 254 84	2.68 1.18 0.96	0.001	23.8 32.0 38.9	0.004
HLA A 10/10 9/10 A match 9/10 A mm	933 194 60	2.68 1.18 1.10	0.17	23.8 32.1 31.4	0.063
HLA B 10/10 9/10 B match 9/10 B mm	933 232 22	2.68 1.21 1.10	0.011	23.8 30.5 47.2	0.026
HLA C 10/10 9/10 C match 9/10 C mm	933 143 111	2.68 0.91 1.47	0.28	23.8 36.9 25.8	0.026
HLA DR 10/10 9/10 DR match 9/10 DR mm	933 246 8	2.68 1.10 2.08	0.75	23.8 32.7 12.5	0.036
HLA DQ 10/10 9/10 DQ match 9/10 DQ mm	933 201 53	2.68 1.39 0.82	0.03	23.8 29.2 44.0	0.024

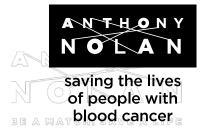
- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT


BE A MATCH, SAVE A LIFE

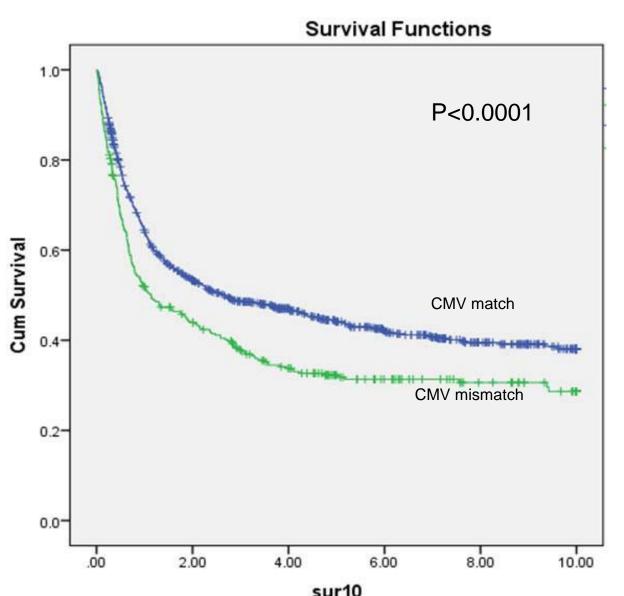
- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

Factors that influence the outcome of HSCT

- HLA matching of donor and recipient
- CMV status of donor and recipient
- Gender of donor and patient
- Allo-immunisation of the patient
- Age of the patient/donor
- Type and stage of the disease
- Conditioning and immunosupressive regimen
- PBSC vs Bone Marrow

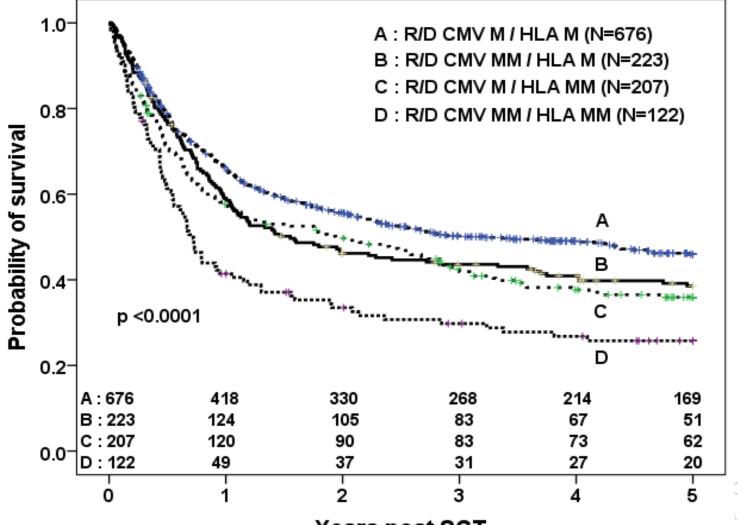


Factors that influence the outcome of HSCT

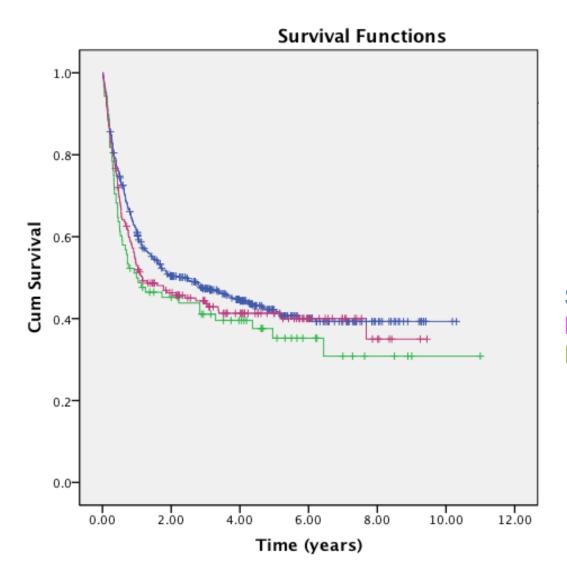

Recipient/Donor CMV matching may offset the survival disadvantage of an HLA mismatch in recipients of unrelated donor transplants

Bronwen E Shaw, Neema P Mayor, Richard M Szydlo, Will P Bultitude, Chloe Anthias, Keiren Kirkland, Julia Perry, Andrew Clark, Stephen Mackinnon, David I Marks, Antonio Pagliuca, Michael N Potter, Nigel H Russell, Kirsty Thomson, J Alejandro Madrigal, Steven G E Marsh

Bone Marrow Transplantation (2017) 52, 717–725



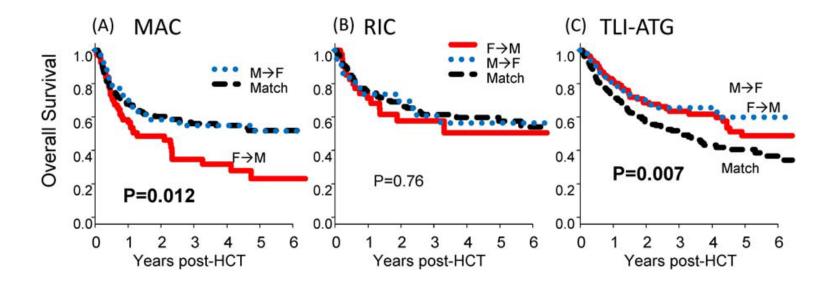
CMV MATCHING IMPROVES SURVIVAL IN TCD ALLOGRAFTS



COMBINED IMPACT OF HLA MATCHING AND CMV SEROSTATUS

Years post SCT

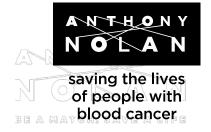
Survival dependent on donor sex



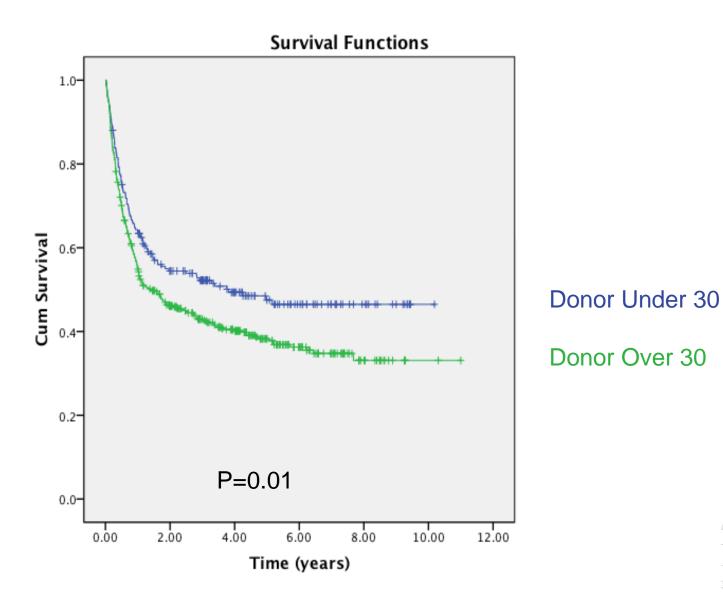
Sex Match Male Donor Female Recipient Female Donor Male Recipient

Gender of donor and recipient

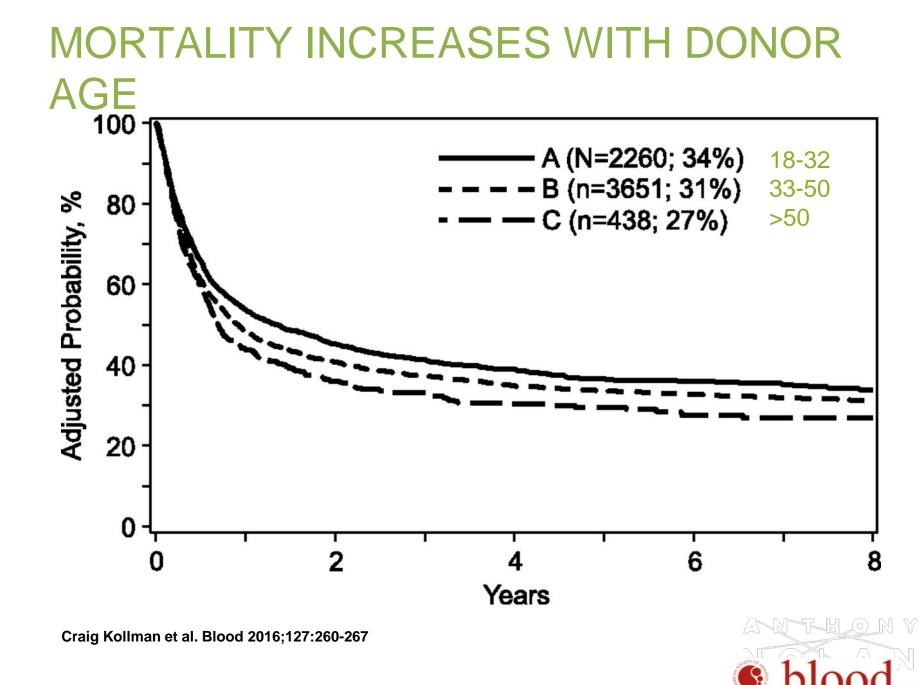
Figure 1

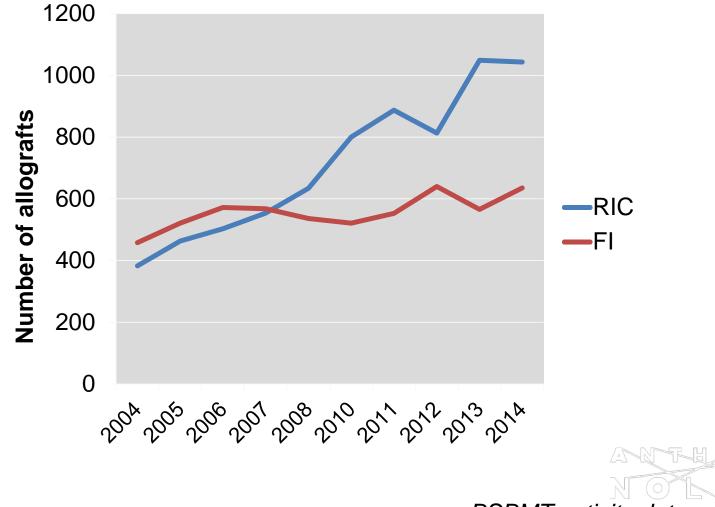


Risks and Benefits of Sex-mismatched Hematopoietic Cell Transplantation Differ by Conditioning Strategies by Hideki Nakasone, Mats Remberger, Lu Tian, Petter Brodin, Bita Sahaf, Fang Wu, Jonas Mattsson, Robert Lowsky, Robert Negrin, David B. Miklos, and Everett Meyer HAEMOTOLOGICA 06/215

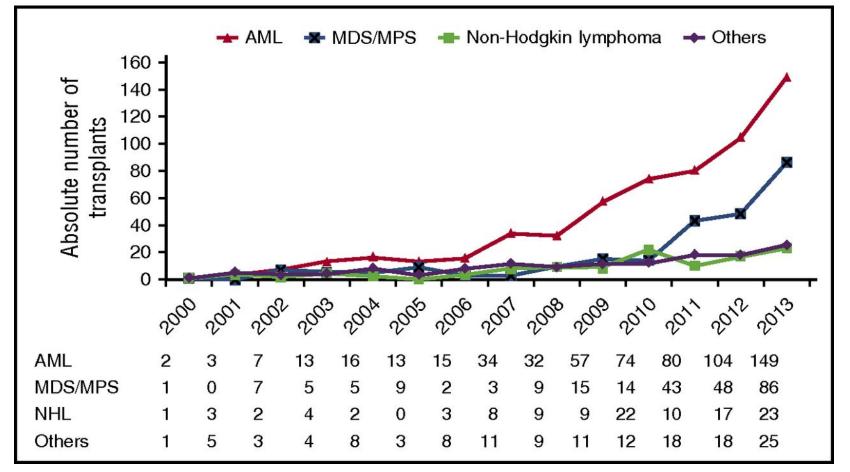


Factors that influence the outcome of HSCT


- HLA matching of donor and recipient
- CMV status of donor and recipient
- Gender of donor and patient
- Allo-immunisation of the patient/donor
- Age of the patient/donor
- Type and stage of the disease
- Conditioning and immunosupressive regimen
- PBSC vs Bone Marrow

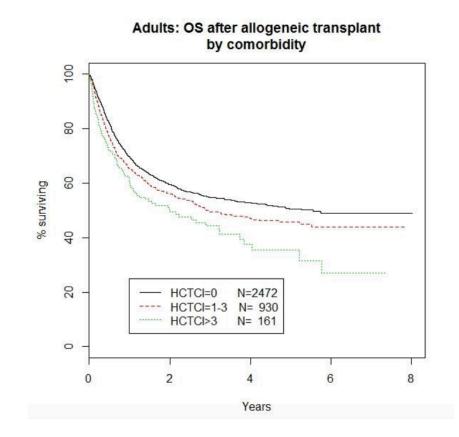

Donor Age

ANTHON Y NOLAN BE A MATCH, SAVE A LIFE



WE ARE TRANSPLANTING A DIFFERENT PATIENT POPULATION

BSBMT activity data , SAVE A LIFE


ANNUAL NUMBER OF HSCTs IN PATIENTS OVER 70 BY DISEASE INDICATION

Lori Muffly et al. Blood 2017;130:1156-1164

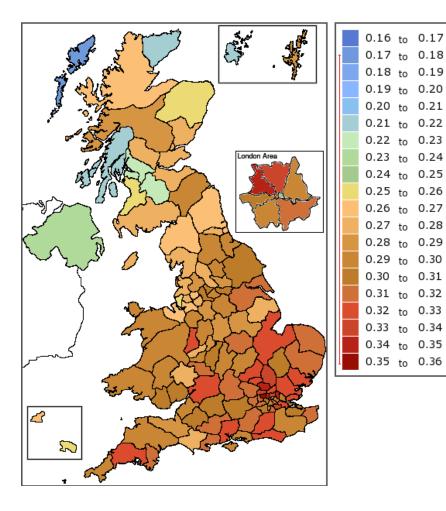
OLDER PATIENTS HAVE MORE COMORBIDITIES WHICH INFLUENCES TRANSPLANT OUTCOME

BSBMT commissioners report 2016

BE A MATCH, SAVE A LIFE

NOVEL ANTI-CANCER TREATMENTS

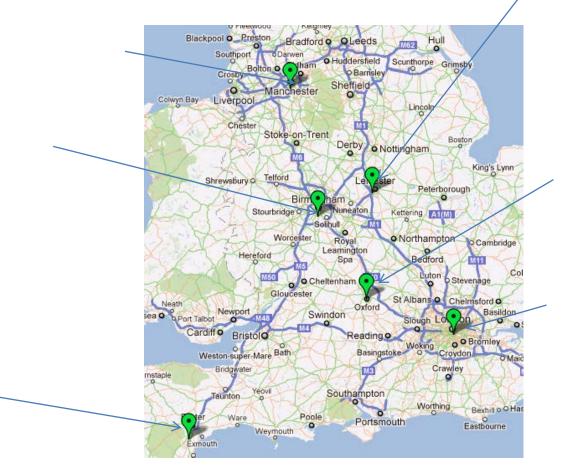
-mean that some patients will no longer need a transplant
-but other patients with higher risk disease are now surviving to receive a transplant
- For some diseases (eg lymphoma) we are now transplanting higher risk patients
- More patients with pre-existing treatment toxicities are undergoing allograft



Registry of Unrelated Donors: Main Changes Over the Last 10 Years

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

Phenotypic Diversity



Area	Expected	Observed
NW - Northwest London	35.42%	38.09%
N - North London	34.25%	35.20%
IP - Ipswich	31.61%	32.20%
NR - Norwich	31.98%	35.91%
BT - Belfast	24.06%	22.65%
G - Glasgow	22.38%	21.24%

saving the lives of people with blood cancer

HOT SPOT ACTIVITY

All areas: Materials to Marrow groups and Army bases; encourage local sports teams to support Fit to Spit day; pitch articles with donors to local media; promote existing recruitment events; relevant case studies; Targeted FB ads; promoting offline recruitment events through relevant online channels (e.g. "local" Twitter profiles); trail targeting geographically for blog seeding,

Our targeted recruitment strategy

- In 2012 we changed our joining age from 18-40 to 16-30
- We have a targeted recruitment strategy focussing on young men
- One of the ways we are trying to improve the chances for Black, Asian and Minority Ethnic communities in the UK is to target our recruitment in BAME communities
- According to UK census data 14% of the UK population are BAME and in 2015 19% of our register define themselves as BAME

Registry of Unrelated Donors: Main Changes Over the Last 10 Years

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

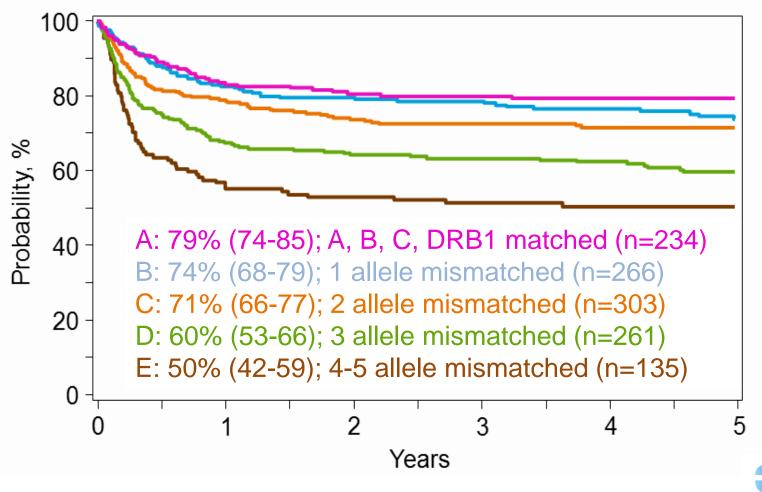
Estimate Likelihood of Successful Search Based on Genotype Frequency

Race/ ethnicity	Prob of one or more 8/8	Good search prognosis (>2 matched donors)
Caucasian	.72	.58
African	.30	.08
Hispanic	.44	.16
Asian/Pacific Islander	.46	.31

In a validation cohort, 42% of patients with Good, 10% with Fair and 4% with Poor search scores underwent a 10/10 HCT (Wadsworth, et al, BMT 2016)

Registry of Unrelated Donors: Main Changes Over the Last 10 Years

- Number of unrelated bone marrow donors
- Number of Registries around the word
- Number of HLA alleles described
- Increased resolution of typing techniques
- Number of HLA genes needed to be matched
- Matching for non-HLA genes
- Understanding other factors that impact on the outcome of HSCT
- Changes in the demographic composition of UD Registries
- Contribution of UD Registries in the improvement of the outcome of HSCT

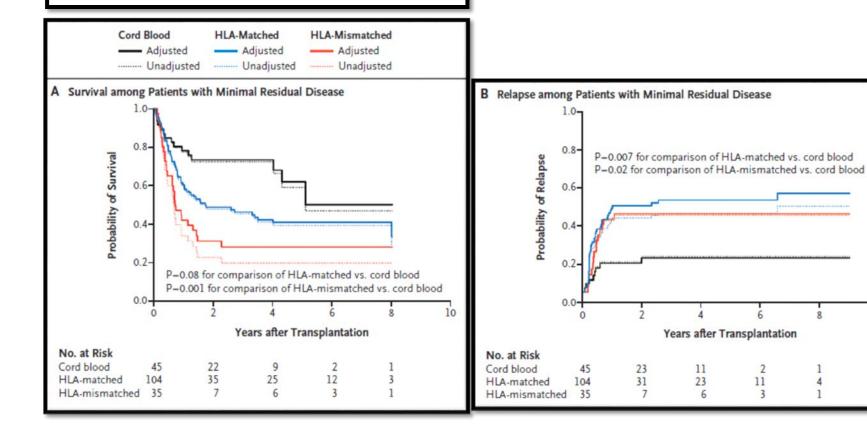

The future potential role of UD Registries

A DONOR FOR EVERYONE

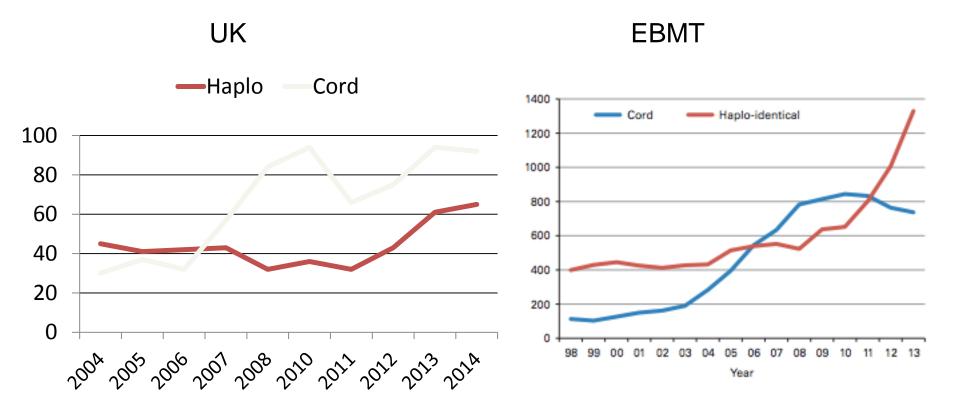
- Related Donors
- Unrelated Donors
- Cord blood
- Haploidenticals
- +Cell therapy

Effect of Allele-level Matching at A, B, C, DRB1 on Survival after Cord Blood HCT for Non-malignant Disease in Children (Eapen, Lancet Haematology 2017))

ORIGINAL ARTICLE


Cord-Blood Transplantation in Patients with Minimal Residual Disease

Filippo Milano, M.D., Ph.D., Ted Gooley, Ph.D., Brent Wood, M.D., Ann Woolfrey, M.D., Mary E. Flowers, M.D., Kristine Doney, M.D.,
Robert Witherspoon, M.D., Marco Mielcarek, M.D., Joachim H. Deeg, M.D.,
Mohamed Sorror, M.D., Ann Dahlberg, M.D., Brenda M. Sandmaier, M.D.,
Rachel Salit, M.D., Effie Petersdorf, M.D., Frederick R. Appelbaum, M.D., and Colleen Delaney, M.D. N ENGL J MED 375;10 NEJM.ORG SEPTEMBER 8, 2016


"Among patients with pretransplantation minimal residual disease, the probability of overall survival after receipt of a transplant from a cord-blood donor was at least as favorable as that after receipt of a transplant from an HLAmatched unrelated donor and was significantly higher than the probability after receipt of a transplant from an HLA-mismatched unrelated donor.

Furthermore, the probability of relapse was lower in the cord-blood group than in either of the other groups."

10

INCREASING ALTERNATIVE DONOR TRANSPLANTS IN UK AND EUROPE

BSBMT and EBMT activity data 2014

CURRENT HAPLO TRANSPLANT PLATFORMS

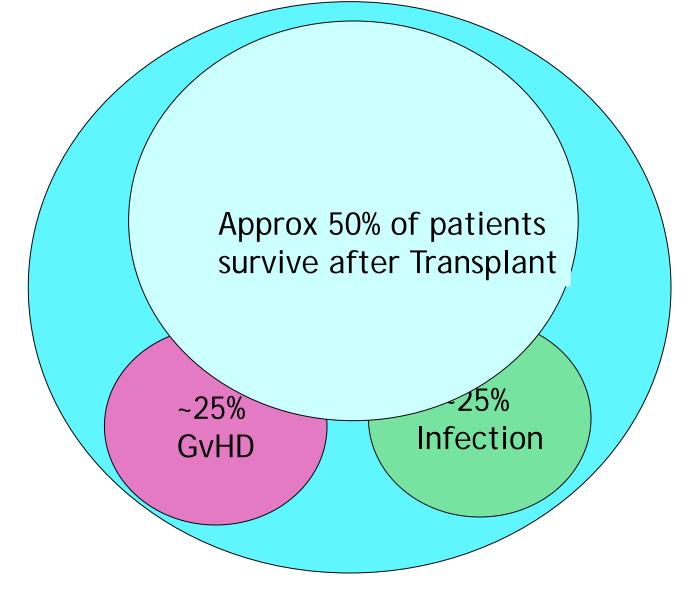
Reduced intensity, Baltimore

Post transplant cyclophosphamide

Myeloablative: Genoa group

China: ATG based conditioning + aggressive IS with GCSF mobilised BM/PBSC

Graft manipulation: Selective T cell (and B cell) depletion


TBF- Primed BM- ATG + MTX + CSA + MMF+Basiliximab

Manipulating conditioning

TBF FluTBI- BM+ CSA + MMF+CTX (+3, +5)

TreoFlu- PBSC-ATG+MMF+Rapamycine

TRANSPLANTATION OUTCOME

Breakthrough of the Year 2013

Breakthrough of the Year

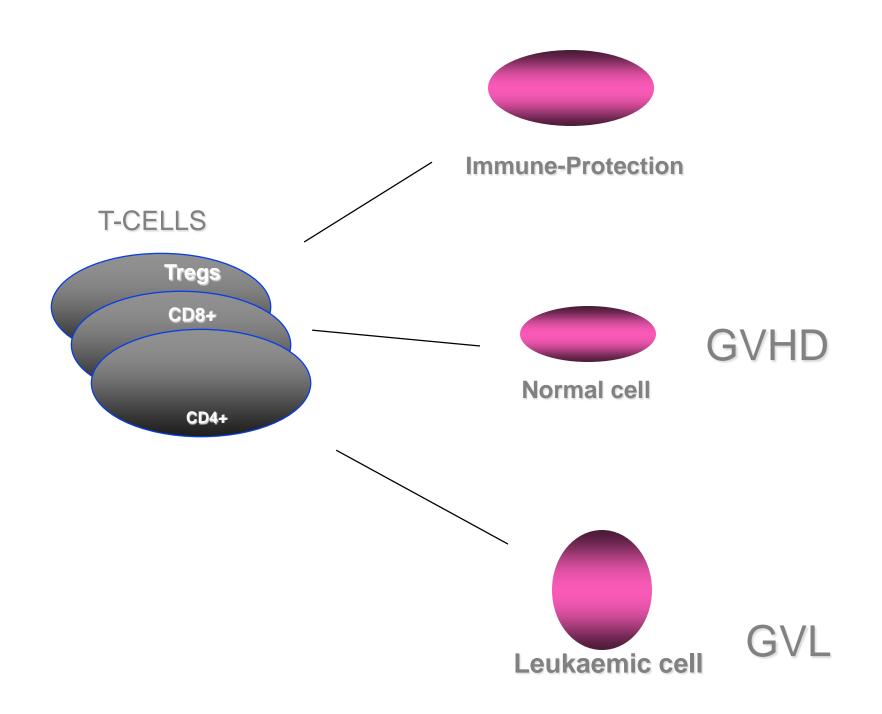
Cancer Immunotherapy

Tence

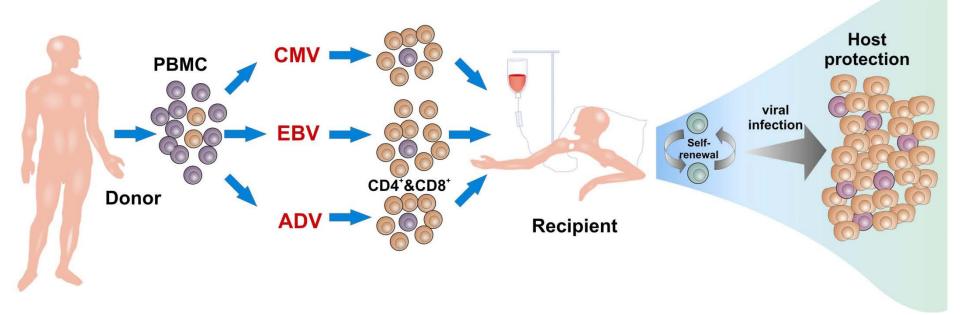
T cells on the attack

1. Cancer Immunotherapy

- 2. CRISPR
- 3. CLARITY
- 4. Human Stem Cells from Cloning
- 5. Mini-Organs
- Cosmic Particle Accelerators
- 7. Perovskites Solar Cells
- 8. Why We Sleep
- 9. Our Microbes, Our Health
- 10. In Vaccine Design, Looks Do Matter


MAAAS

THE ANTHONY NOLAN RESEARCH INSTITUTE



IMMUNE CELL THERAPY

Strategy

Isolation of multipathogen-specific T-cells

adapted from Feuchtinger et al. Leukemia & Lymphoma 2006

SUMMARY

- There is now a donor for every patient who needs one
- Results of Cord and Haplo are approaching those of UD allografts and equal to MMUD in most diseases
- Expense and slow engraftment limit cord use
- Relapse remains an issue in haplo for acute leukaemia
- Need randomised comparison data!
- Cord blood expansion techniques and results of allelic level typed cord studies may improve outcomes

Our Future Task

- Continue to develop strategies to improve outcomes – decreasing both toxicity and relapse
- Understand who is the right donor for the right kind of transplant delivered at the right time to optimize survival and quality of life
- Ensure that all patients have access to the best therapy

Acknowledgements **BSBMT**

The Anthony Nolan Research Inst: Kei

Steven Marsh

EBA

European Society for Blood and

- Bronwen Shaw
- Richard Szydlo
- Chloe Anthias
- Neema Mayor Robert Danby

WMDA

Lydia Foeken

Keiren Kirkland Julia Perry Nigel H Russell Andrew Clark **Stephen Mackinnon** Charles Craddock **David I Marks** Antonio Pagliuca Michael N Potter Andy Peniket Kirsty Thomson